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Condensed	excerpt.	Elements	of	Structured	Finance,	Ch.	22:	The	Valuation	of	Structured	Securities	
	

“Μελέτα	τό	πάν”	-Periander	
	
	
I. Introduction:	To	Value	a	deal	means	to	give	it	ground,	and	nothing	else.		

	
In	assigning	ratings	to	structured	securities,	Spectrum	pays	attention	to	what	is	really	measured	when	a	
deal	is	valued,	as	opposed	to	how	it	is	actually	measured.	The	credit	rating	must	reflect	changes	in	value	
as	driven	by	credit	factors,	or	else	the	rating	becomes	decoupled	from	value	and	becomes	a	source	of	
noise	that	can	destabilize	credit	markets.		
	
The	basic	problem	of	financial	valuation	(and	hence	rating	financial	assets)	is	to	carry	out	the	valuation	
process	from	the	ground	up	in	a	self-consistent	manner.	If	done	correctly,	price	coalesces	around	Value	
in	an	obvious	manner	to	enable	risk	management—which	encompasses	trading	and	own-risk—at	the	
security’s	equilibrium	price,	aka	fair	market	value.	This	process	is	precisely	and	exclusively	how	a	market	
can	develop	for	an	asset.	Valuation	is	how	the	deal	comes	together	as	a	deal,	as	a	manifold	unity.	
	
In	Elements-Chapter	14,	we	introduce	non-linearity	by	showing	how	the	deal	comes	together	inside	a	
feedback	loop	in	yield	space.	Thus,	for	lack	of	a	better	word,	yield	is	redefined	as	original	time,	the	
transcendental	horizon	for	the	understanding	of	dealing,	where	the	deal	emerges	out	of	itself	and	yields	
its	Value,	its	true	price.	By	linking	interest	rates	to	themselves	within	a	cybernetic	feedback	loop,	they	
come	to	their	final,	unique	resting	place	on	their	own.	When	it	exists,	this	fixed	point	is	the	“Value”	of	
the	deal.	What	gives	Value	credibility	and	elevates	it	above	the	rank	of	opinion	is	not	that	it	is	cheap	or	
rich,	high	or	low,	or	reflects	a	pre-established,	purported	fount	of	human	wisdom;	but	rather,	it	is	
grounded:	unique.	
	
II. The	Structured	Valuation	Problem:	Resolving	Nonlinearity	

	

A	deal’s	Value	is	the	limit	point	of	an	iterative	procedure	operating	in	a	multi-dimensional,	non-linear	
space.	Its	dimensionality	equals	to	number	of	deal	credit	tranches.	A	two-tranche	deal	is	a	two-
dimensional	Euclidean	space:	the	yield	on	any	fixed	income	security	can	be	regarded	as	a	real	number
r ∈ [−1,1] .			
	
Spectrum	values	structured	securities	by	exploring	the	dependencies	of	rates	and	ratings	on	the	average	
reduction	of	yield	a	security-holder	would	experience	over	a	range	of	realizations	in	Monte	Carlo	[MC]	
simulation.	We	say	the	results	relate	to	the	transaction	under	review	by	the	ergodic	hypothesis.		
	
But,	to	know	the	rating	requires	knowledge	of	the	rate;	and	to	know	the	rate	requires	knowledge	of	the	
rating!	We	cannot	redefine	credit	ratings	as	knowable	a	priori.	The	problem	will	simply	reappear	from	
another	angle.	The	problem	cannot	be	removed	via	mapping	or	transformation.	This	is	the	non-linearity	
of	structured	finance,	which	Spectrum	resolves	by	the	Non-Linear	Convergence	Algorithm:	
	
1- Estimate	an	initial,	provisional	yield	vector—one	rate	for	each	credit	tranche	in	the	deal.		
2- Perform	a	first	MC	simulation	using	this	provisional	yield	vector	and	other	deal	assumptions,	and	

derive	tranche	credit	ratings	as	their	average	yield	reductions.	
3- Use	empirically	derived	yield-spread	curves	(or	a	model)	to	compute	interest	rates	from	both	the	

average	reduction	of	yield	and	the	average	life	of	each	security.	
4- Using	the	below	relaxation	method,	transform	the	output	rates	into	a	new	input-rate	vector	and	

substitute	the	latter	into	the	MC	engine.	
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5- Compute	the	absolute	value	difference	between	input	and	output	rates	expressed	as	a	percentage	
of	the	input	rates.		

6- Define	the	convergence	parameter δ 	as	the	percentage	in	(5)	weighted	by	initial	tranche	balances.	
7- Repeat	the	sequence	above	until δ 	falls	below	a	specified	error	bound	in	the	neighborhood	of	1%.	
8- The	final	yield	vector	can	now	be	defined	as	the	Value	of	the	deal.	Because	Value	is	fair,	the	offered	

price	of	each	security	should	be	par.	
	
Figure	22.1:	The	Valuation	Schema	in	Structured	Finance	

	
	
The	vector-valued	mapping	function g(r) 	in	Figure	22.1	stands	for	the	complete	deal	cycle	consisting	of	
an	entire	MC	simulation.	Each	simulation	covers	thousands	of	deal	realizations,	involving	perhaps	three	
hundred	time	steps	each,	and	potentially	thousands	of	obligors	processed	in	each	MC	scenario.	Yield	
curve	modeling	is	involved	in	this	process,	as	is	credit-spread	calculation.	The	rate	relaxation	algorithm	
can	usually	be	subsumed	under	the	mapping	function g(r) 	without	loss	of	generality.	
	
The	iterative	valuation	scheme	can	be	represented	as	 rn+1 = g(rn ) 	 	 	 22.5	
	
It	is	now	trivial	to	define	theoretically	the	Value	of	the	deal V as	the	fixed	point r∞ of	the	map g(r) :	
V ≡ r∞ = g(r∞ ) 	 	 	 	 	 22.6	
The	practical	problem	now	becomes	the	determination	of	conditions	under	which	the	sequence	of	rate-
vectors rn 	will	converge	to	some	fixed	limit.	The	behavior	of	non-linear	iteration	is	idiosyncratic.	Well-
posed	linear	systems	can	almost	always	be	solved,	but	non-linear	maps	present	special	problems.	Their	
resolution	requires	a	unique	solution.	
	
III. Contraction	Mapping	and	Deal	Valuation	

	

Spectrum	resolves	this	nonlinear	iteration	problem	by	the	Banach	contraction-mapping	theorem.	We	
posit	it	as	the	fundamental	valuation	theorem	in	structured	finance.		
	
The	Banach	Contraction	Mapping	Theorem	
	

Let X 	be	a	complete1	metric	space	equipped	with	metric d 	and	let	the	map g(x) be	given	by
g(x) : X→ X ,	mapping	every	element	of X 	onto	another	element	of X .	The	elements	of X are	
conceived	as	vectors,	i.e.	groups	of	numbers	with	as	many	dimensions	as	we	like.			
This	mapping	is	also	a	contraction	mapping	when	any	two	elements	of	the	domain	are	mapped	to	a	pair	
of	images	that	are	closer	to	each	other	than	the	original	pair	of	elements,	i.e.	the	following	condition	
holds	for	any	choice	of	elements x 	and y 	in X 	for	some q, 0 ≤ q<1 :	

                                                
1	A	metric	space	M	is	complete	if	every	Cauchy	sequence	in	M	converges	in	M.	
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posit	it	as	the	fundamental	valuation	theorem	in	structured	finance.		
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1	A	metric	space	M	is	complete	if	every	Cauchy	sequence	in	M	converges	in	M.	
2 Elements-Chapter	22	reviews	the	algebra	of	a	contractive	mapping	in	one	dimension	and	details	on	the	
relationship	between	the	mapping	function	slope	and	the	convergence	process.	

Input Rates [rn] Output Rates [rn+1] 

Relaxation Algorithm 

Deal Analysis 

g(rn) 
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d(g(x),g(y)) ≤ qd(x, y) 	 	 	 	 	 22.7	
	
In	one	dimension	the	metric	or	norm	is	generally	the	distance	between	two	elements	and	the	absolute	
value	of	their	algebraic	difference.	E.g. x − y ,	with	each	element	represented	by x ≡ [x1, x2 ] ,	where	the	
metric	is	the	distance	between	elements x 	and y 	using	the	Euclidean	norm:	
	

d(x, y) = x1 − y1( )2 + x2 − y2( )2 	 	 	 	 	 22.8	

	
The	metric	can	be	generalized	to	more	than	two	dimensions.	Each	dimension	must	be	considered	in	turn	
and	some	other	form	must	be	used	for	the	norm.	For	structured	finance,	we	will	generally	need	as	many	
dimensions	as	there	are	credit	tranches	in	the	deal.	RMBS	have	many	liquidity	tranches	but	usually	no	
more	than	three	credit	tranches;	ABS	deals	may	have	more.		
	
By	Theorem	1,	if	a	deal’s	mapping	 g(r) 	is	contracting	over	some	domain,	a	valuation	exists	as	a	unique	
fixed	point.	Sensitivity	of	the	convergence	(basis	of	attraction)	increases	with	the	number	of	tranches.	
	
Theorem	1	(Banach):	
	

For	constant	𝑞, 0 ≤ 𝑞 ≤ 1,	every	contaction	mapping	in	𝑋	with	metric	𝑑	has	a	unique	fixed	point.	
	
	

What	this	means	in	deal	terms	is	that	the	distance	between	the	initial	EDR	estimate	and	the	actual	EDR,	
always	ideally	small,	must	shrink	as	the	number	of	credit	tranches	rises.2		
	
Ratability	and	the	Valuation	Space	in	Structured	Finance	
	

Every	deal	structure	has	a	finite	initial	set	around	the	solution	vector	within	which	the	deal	converges,	
another	such	set	where	it	diverges,	and	a	border	where	it	neither	converges	nor	diverges.	To	see	this	
point,	consider	the	geometry	of	mappings	generally	and	consider	that	the	deal’s	root	locus	behaves	as	a	
quadratic	function.		
	

a x2 + b x + c = 0 	 	 	 	 	 	 	 	 	 22.19	
	
The	roots	of	quadratic	forms	such	as	22.19	are	determined	by	their	determinantD 	given	by:	
	

D = b2 − 4ac 	 	 	 	 	 	 	 	 	 	 22.20	
	

Depending	on	the	value	ofD ,	there	will	be	2	real	roots	[D > 0 ],	a	single	real	root	[D = 0 ]	or	two	
imaginary	roots	[D < 0 ].		Call	hyperbolic	situations	those	whereD > 0 	(the	roots	are	real	and	exist),	
parabolic	those	where	D = 0 	and	elliptic	those	where	D < 0 .	Below,	in	Figure	22.3,	the	weights	are	
a = 0.03 ,	 b = − 0.36 ,	 c = 0.85 .	The	determinant	is	D = (0.36)2 − 4(0.03)(0.85) = 0.276 > 0 	and	the	
equation	has	two	real	roots.	Had	D = 0 	prevailed,	the	graph	would	have	barely	touched	the y 	axis.	If	
D < 0 	held,	the	whole	curve	would	have	been	above	the y 	axis	and	the	roots,	imaginary.	This	is	also	
how	the	deal’s	valuation	process	presents	itself,	as	a	mapping	function	like	that	of	 g(x) .	
	
	

                                                
2 Elements-Chapter	22	reviews	the	algebra	of	a	contractive	mapping	in	one	dimension	and	details	on	the	
relationship	between	the	mapping	function	slope	and	the	convergence	process.	
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Figure	22.3:	The	Concept	of	the	Hyperbolic	Map	

	
	

Finding	the	roots	of	the	deal	is	solving	for	the	roots	of	 g(x) ,	and	the	same	nomenclature	applies.	When	
the	roots	of	the	deal	are	real,	we	refer	to	a	hyperbolic	iteration	whereby	the	determinant	of g(x) 	is	
greater	than	zero.	In	Banach’s	theorem,	this	is	 q <1 	and	a	solution	exists.	Such	deals	are	well	posed	
since	their	mapping	function	will	always	lead	to	Value.		
	
A	well-posed	deal	does	not	mean	riskless—it	means	ratable.	“Value”	implies	existence	and	uniqueness.	
When	the	roots	are	the	same,	we	have	the	parabolic	situation	and	D = 0 	holds,	which	corresponds	to
q ≈1 .	A	real	solution	tenuously	exists—a	meta-stable	situation.	When	D < 0 ,	the	roots	are	imaginary	
and	the	deal	will	diverge.	It	does	not	work,	or	is	ill-posed.	Spectrum	cannot	rate	a	non-deal.	
	
The	topology	of	structured	financial	analysis	contains	a	fuzzy	region	where	the	deal	is	neither	strictly	
hyperbolic	nor	elliptic.	Instead	of	a	line,	the	parabolic	region	will	be	a	strip	and	deals	lying	on	it	will	move	
in	and	out	of	convergence	due	to	the	irreducible	randomness	and	vagaries	of	MC	analysis.	Valuations	
launched	inside	the	parabolic	strip	may	very	well	converge	in	one	MC	simulation	and	diverge	in	the	next	
one.	This	region	is	by	far	the	most	tempting	deal-space	areas	for	an	arranger	to	obtain	a	rating	on,	just	
because	its	ratability	is	borderline.	
	
The	Two	Vector	Spaces	Inherent	in	Structured	Finance		
	

Deal	space	really	consists	of	two	distinct	sub-spaces:	yield	and	parametric.	In	effect,	valuation	needs	to	
achieve	two	distinct	and	independent	forms	of	convergence.	These	two	concepts	address	completely	
different	aspects	of	the	valuation	puzzle	and	require	separate	discussions.	But	their	topological	
properties	are	closely	related,	so	understanding	achieved	in	one	space	can	be	carried	over	to	the	other.	
	

Yield	Space	
As	its	name	indicates,	yield	space	refers	to	the	space	of	liability	interest	rates.	It	makes	up	the	schema	
that	enables	us	to	talk	about	the	uniqueness	of	structured	valuation	(see	Section	22.6	below).		This	space	
is	a	natural	outgrowth,	generalization	and	consequence	of	Banach’s	fixed-point	theorem.	
Parametric	Space	
This	more	abstract	space	involves	basic	deal	parameters,	things	like	issuance	levels,	reserve	accounts	
and	delinquency	triggers.	It	is	within	this	space	that	the	notion	of	“optimality”	within	structured	analysis	
can	be	defined.	As	a	result,	it	is	just	as	important	as	yield	space.	More	importantly,	it	is	freedom	space.	
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Meta-Stability	in	Structured	Finance	
	

Meta-stability	is	a	concept	borrowed	from	the	field	of	dynamics	and	is	significant	to	rating	analysis.	It	
refers	to	instability	to	relatively	small	disturbances.	This	is	the	case	for	non-investment	grade	bonds,	
whose	payment	certainty	is	vulnerable	to	multiple	dimensions	of	risk.	It	also	describes	the	tenuous	
convergence	behavior	of	tranches	subjected	to	randomness	in	Monte	Carlo	valuation	techniques.	
	
Consider	Figure	22.4-a	representing	a	truly	stable	environment	while	Figure	22.4-b	tries	to	convey	the	
physical	and	intuitive	notion	underlying	meta-stability,	where	instability	would	result	from	any	
disturbance	on	the	right	or	left.	More	complicated	situations,	called	saddle	points,	exist	in	structured	
valuations,	where	some	regions	are	stable	and	some	non-stable.	Non-linear	space	is	intricate.	
	

Figure	22.4:	 The	Distinct	but	Related	Notions	of	Stability	and	Meta-Stability	
	

	
	

VI. Convergence	in	Yield	Space:	Banach	Land	
	

Under	Banach’s	thought	leadership	we	can	define	the	deal’s	existence	as	a	region	wherein	an	iterated	
sequence	of	tranche	rates	became	a	Cauchy	sequence.	This	definition	allows	us	to	define	unambiguously	
what	a	deal	means.	Consider	Figure	22.5	as	a	yield-space	schematic	for	a	two-tranche	transaction.	We	
define	the	rate	vector	as r1 	for	Class	A	and r2 	for	Class	B.	The	dark	spot	in	the	lightly	shaded	portion	is	
the	solution	rate-vector r∞ .	The	convergence	regions	are	non-overlapping.	A	parabolic	region	would	be	
much	thinner	than	shown	here.	
	
Given	any	starting	rate-vector	in	the	hyperbolic	region,	iteration	of	the	deal’s	mapping	function g(r) 	
converges	to	the	unique	fixed	point	in	Figure	22.5.	The	hyperbolic	region	does	not	include	zero	interest	
rates.	In	theory	the	width	of	the	parabolic	strip	can	be	made	smaller	by	increasing	the	number	of	Monte	
Carlo	scenarios,	but	it	is	fundamentally	constrained	by	the	basic	uncertainty	inherent	in	issuer	data	and	
by	the	limited	resolution	compatible	with	the	capital	markets’	measure	of	value,	whichever	is	smallest.			
	
One	cannot	ask	the	simulation	to	be	more	precise	than	the	resolution	found	either	in	the	original	data	or	
in	our	own	limits	of	measurability.	Even	on	a	theoretical	basis,	the	width	of	the	parabolic	strip	will	
always	remain	finite.	In	practice,	the	maximum	number	of	scenarios NM 	can	be	set	equal	to	the	
minimum	value	such	that	an	additional	scenario	would	change	the	overall	deal	average	reduction	of	
yield	by	at	most	1/100th	of	a	basis	point:	
	
NM =min

N
ΔIRR(N +1)−ΔIRR(N ) ≤ 0.01{ } 	 	 	 	 	 	 22.21	
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disturbance	on	the	right	or	left.	More	complicated	situations,	called	saddle	points,	exist	in	structured	
valuations,	where	some	regions	are	stable	and	some	non-stable.	Non-linear	space	is	intricate.	
	
Figure	22.4:	 The	Distinct	but	Related	Notions	of	Stability	and	Meta-Stability	

	
	
	
IV Convergence	in	Yield	Space:	Banach	Land	
	
Under	Banach’s	leadership	we	are	able	to	define	the	deal’s	existence	as	a	region	wherein	an	iterated	
sequence	of	tranche	rates	became	a	Cauchy	sequence.	This	definition	allows	us	to	define	unambiguously	
what	a	deal	means.	Consider	Figure	22.5	as	a	yield-space	schematic	for	a	two-tranche	transaction.	We	
define	the	rate	vector	as r1 	for	Class	A	and r2 	for	Class	B.	The	dark	spot	in	the	lightly	shaded	portion	is	
the	solution	rate-vector r∞ .	The	convergence	regions	are	non-overlapping.	A	parabolic	region	would	be	
much	thinner	than	shown	here.	
	
Given	any	starting	rate-vector	in	the	hyperbolic	region,	iteration	of	the	deal’s	mapping	function g(r) 	
converges	to	the	unique	fixed	point	in	Figure	22.5.	The	hyperbolic	region	does	not	include	zero	interest	
rates.	In	theory	the	width	of	the	parabolic	strip	can	be	made	smaller	by	increasing	the	number	of	Monte	
Carlo	scenarios,	but	it	is	fundamentally	constrained	by	the	basic	uncertainty	inherent	in	issuer	data	and	
by	the	limited	resolution	compatible	with	the	capital	markets’	measure	of	value,	whichever	is	smallest.			
	
Figure	22.5:	 Convergence	in	Yield	Space	

Hyperbolic 
[Stable System] [Meta-Stable System] 
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This	definition	is	arbitrary,	but	it	is	Spectrum’s	cut-off	point.	
	
Figure	22.5:	 Convergence	in	Yield	Space	

	
	

The	Value	of	the	Deal		
	
Spectrum’s	definition	of	the	Value	of	a	deal V 	in	formal	and	practical,	non-ambiguous	terms,	is	the	
unique	solution-vector r∞ 	located	in	the	hyperbolic	region:	
	

r∞ ≡ r |
g(r) − r

r
≤ ε 	 	 	 	 	 	 	 	 	 22.22	

	
V ≡ r∞ 	 	 	 	 	 	 	 	 	 	 	 22.23	
	
In	equation	22.22,	the	error	bound ε 	should	be	set	somewhere	around	1%.	Randomness	will	usually	
prevent ε 	from	being	set	too	close	to	zero.	
	
As	dictated	by	Banach’s	theorem,	equation	22.22	is	a	practical	definition	of	when	to	quit	when	
attempting	to	reach	the	fixed	point.	As	already	pointed	out,	statistical	error	and	other	constraints	will	
always	prevent	us	from	getting	infinitely	close	to	the	asymptotic	limit	implied	by	equation	22.6	and	we	
will	have	to	remain	content	with	the	stop	law	measured	by ε .	However,	the	deal’s	basic	Value	range	
thereby	implied	is	not	something	“wrong”	with	this	method.	Knowledge	has	limits.	On	the	other	hand,	
what	is	wrong	is	for	a	ratings	agency	to	pretend	to	offer	perfect	knowledge.	
	
Calibration	
	

Strictly	speaking,	the	Value	of	the	deal	refers	not	to	an	outcome	but	to	a	process.	Deal	valuation	is	the	
re-enactment	of	this	process,	not	the	computation	of	a	number.	In	practice,	one	obviously	needs	
produce	one,	but	as	far	as	pricing	goes,	a	wide	array	of	choices	will	work	just	as	well	in	allowing	markets	
to	clear.	To	assign	a	numerical	figure	to	Value	is	to	linearize	the	deal.	However,	because	the	latter	
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In	other	words,	one	cannot	ask	the	simulation	to	be	more	precise	than	the	resolution	found	either	in	the	
original	data	or	in	our	own	limits	of	measurability.		As	a	result,	even	on	a	theoretical	basis,	the	width	of	
the	parabolic	strip	will	always	remain	finite.		In	practice,	the	maximum	number	of	scenarios NM 	can	be	
set	equal	to	the	minimum	value	such	that	an	additional	scenario	would	change	the	overall	deal	average	
reduction	of	yield	by	at	most	one	hundredth	of	a	basis	point:	
	
NM =min

N
ΔIRR(N +1)−ΔIRR(N ) ≤ 0.01{ } 	 	 	 	 22.21	

	
Some	will	argue	with	this	arbitrary	definition	and	there	is	certainly	room	for	debate	here.		But	arguing	
this	point	is	counterproductive	and	anyone	should	feel	free	to	set	any	limit	they	please,	as	long	as	no	
attempt	is	made	to	simply	raise	the	value	of N 	so	as	to	“crunch”	one’s	way	out	of	trouble.	In	all	cases,
NM 	will	remain	finite	and,	in	fact,	will	be	surprisingly	small.	
	
At	the	outset	of	the	analysis,	the	deal’s	hyperbolic	region	would	need	to	be	mapped	out	via	trial	and	
error,	preferably	before	the	deal	has	to	go	to	market.		Thereafter,	prior	experience	would	normally	
provide	guidance	as	to	the	location	of	an	appropriate	starting	rate-vector r0 	that	would	more	or	less	
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concept	is	so	ambiguous,	we	use	the	word	calibration.	It	refers	to	the	determination	of	the	basis	on	
which	a	price	will	be	computed.		
	
Likewise,	any	freshman	chemistry	student	knows	a	thermometer	needs	to	be	calibrated	before	using.	In	
the	end,	it	does	not	matter	whether	water	freezes	at	zero	or	thirty-two	degrees,	for	what	really	matters	
is	that	we	are	all	using	water.	The	world	of	chemistry	looks	the	same	either	way,	and	so	does	the	world	
of	finance.	Assuming	the	deal	will	be	sold	at	that	price,	the	latter	becomes	its	fair	value.	The	word	fair	
means	that	price	and	Value	are	the	same	number,	and	nothing	else.	When	this	is	done	and	widely	
agreed	upon,	we	refer	to	the	associated	figure	as	the	fair	market	value.	
	

V. Convergence	in	Parametric	Space	and	Deal	Optimality	
	

A	parametric	space	delineates	the	multi-dimensional	manifold	formed	by	the	deal’s	basic	parameters.		
Although	unlimited	theoretically,	there	are	seldom	more	than	ten	arbitrary	parameters	in	any	realistic	
transaction.	What	follows	is	a	short	account	of	convergence	properties	inside	parametric	space.	
	
The	Topology	of	Parametric	Space	
	

Convergence	to	a	fixed	point	in	yield	space	is	the	process	of	achieving	self-consistency	in	structured	
analysis.	A	fixed	point	can	only	be	“fixed”	for	given	structures.	Only	when	basic	deal	parameters,	tranche	
sizing,	trigger	levels,	etc.,	remain	unchanged	can	we	truthfully	claim	a	fixed	point	exists	and	is	unique.		
	
What	happens	to	the	fixed	point	if	structural	parameters	are	modified?	It	stands	to	reason	the	deal	will	
not	work	at	arbitrary	issuance	levels	no	matter	what	others	may	say	about	it.	Otherwise,	what	prevents	
indefinite	issuance?	Deals	will	not	possess	Value	outside	a	finite	region	of	parametric	space,	similar	to	
yield	space.	Inside	this	stable	region,	the	deal	will	converge	to	a	different	fixed	point,	in	theory	at	least,	
with	respect	to	each	parametric	combination.	Outside	the	stable	region,	it	will	diverge.	An	intermediate	
region	will	also	exist	that	is	meta-stable.	The	intuition	garnered	from	yield	space	can	therefore	be	
carried	over	unaltered	to	parametric	space	where	we	observe	the	same	three	convergence	regions.	
	
By	analogy	with	yield	space,	we	designate	convergence	regions	in	parametric	space	using	the	labels	
hyperbolic,	elliptic	and	parabolic	respectively	for	the	same	deal,	where	they	are	the	axes	along	which	we	
measure	its	parameters.	Think	of	a	deal’s	parameters	as	the	values a,b 	and c on	the	right-hand	side	of	
22.19.	Consider	Figure	22.6	below,	which	is	nothing	but	the	analogue	of	Figure	22.5	in	parametric	space.		
It	shows	what	happens	topologically	inside	a	deal	where	we	have	conceptually	reduced	the	number	of	
degrees	of	freedom	to	two,	here	arbitrarily	chosen	as	Total	Net	Issuance3	and	Delinquency	Trigger	Level	
as	a	percentage	of	the	currently	outstanding	pool	balance.	
	
Just	like	Figure	22.5,	note	how	the	hyperbolic	region	in	Figure	22.6	is	finite.	For	Total	Net	Issuance,	it	is	
clear	we	can	issue	a	zero	aggregate	amount	of	securities	out	of	any	pool	and	this	‘solution’	is	feasible	
and	stable	in	the	trivial	sense.	A	parabolic	strip	can	be	found	around	the	hyperbolic	stability	region,	with	
the	range	of	allowable	trigger	levels	compatible	with	feasibility	decreasing	as	issuance	increases.		The	
generally	negatively	sloped	orientation	of	the	stable	region	reflects	that	as	total	issuance	increases,	the	
range	of	delinquency	trigger	levels	leading	to	convergence	must	decrease	since	more	spread	must	be	
captured	inside	the	structure	to	justify	the	same	rating,	or	simply	to	allow	the	deal	to	converge	at	all.		
	
	 	

                                                
3		This	can	be	defines	the	aggregate	principal	balance	of	bonds	issued	less	any	initial	deposit	into	a	spread	or	
reserve	account.	
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Figure	22.6:	The	Parametric	Space	and	Deal	Pricing	
	

	
	

Towards	a	Definition	of	the	“Optimal”	Deal	
	
Now	consider	Figure	22.7	below	showing	the	situation,	as	it	is	likely	to	present	itself	after	mapping	out	
the	hyperbolic	manifold.	In	practice	the	space	will	be	multi-dimensional,	not	this	intuitive	or	smooth.	
	
Figure	22.7:	Deal	Optimality	and	Structured	Analysis	

	
	
As	trigger	levels	increase,	Total	Net	Issuance T 	compatible	with	a	convergent	solution	decreases,	
because	less	spread	can	be	accumulated	inside	the	structure	under	stress	cases.		

 14 

	
	

Figure	22.6:	The	Parametric	Space	and	Deal	Pricing	
	
Towards	a	Definition	of	the	“Optimal”	Deal	
	
Now	consider	Figure	22.7	below	showing	the	situation,	as	it	is	likely	to	present	itself	to	an	analyst	after	
mapping	out	the	hyperbolic	manifold.	As	you	can	imagine,	in	practice	the	parametric	space	will	be	multi-
dimensional	and	nowhere	near	as	intuitive	or	smooth	as	what	shows	up	in	Figure	22.7.	In	this	case,	the	
situation	is	clear.	Looking	at	the	top	branch	of	the	stability	region	for	the	moment	we	see	that	as	trigger	
levels	increase,	Total	Net	Issuance T 	compatible	with	a	convergent	solution	decreases.	This	is	simply	a	
reflection	of	the	fact	that	less	spread	can	be	accumulated	inside	the	structure	under	stress	cases.	In	fact,	
it	would	be	amazing	if	this	were	not	the	case	for	how	else	can	deals	put	an	end	to	themselves	except	via	
instability.		In	other	words	given	a	delinquency	trigger	level,	something	usually	decided	a	priori	by	the	
issuer	from	unrelated	considerations,	we	are	in	a	position	to	recommend	to	the	client	a	one-parameter	
family	of	solutions	to	the	liquidity	problem,	i.e.	those	extending	from	zero	to	the	Issuance	Limit	line	
shown	in	Figure	22.7.		This	family	represents	the	deal’s	corresponding	issuance	window	and	can	be	

defined	as	the	range ],0[ MTT ∈ 	whereby MT 	is	the	maximum	feasible	issuance.	As	shown	in	Figure	

22.7,	given	trigger	level 0L 	this	seller	can	only	issue	an	amount mT ,	where Mm TT < 	.	

	
The	thought	that	one	would	automatically	select	the	far	end	of	the	hyperbolic	region	as	the	best	
proposal	to	the	client	is	non-sense	since	this	solution	might	unduly	constrain	the	issuer	operationally	
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Figure	22.7:	Deal	Optimality	and	Structured	Analysis	
	

Therefore,	across	the	issuance	window, ],0[ MTT ∈ 	the	deal’s	tranches	will	be	spanning	the	entire	
spectrum	of	credit	rating	possibilities,	at	least	one	of	which	potentially	satisfies	both	issuer	and	investor.	
Obviously,	the	same	game	can	be	played	vertically	for	a	given	issuance	size	with	respect	to	the	
delinquency	trigger	level.	Since	the	concept	is	entirely	analogous,	we	skip	the	discussion	altogether.	
	
22.9	 A	Live	Example	of	Deal	Convergence	in	Yield	Space	
	
As	highlighted	back	in	Chapter	14,	some	readers	may	rightly	be	wondering	whether	this	method	works	
at	all!	It	seems	so	complicated	and	uncanny	that	perhaps	it	is	nothing	but	smoke	and	mirrors	designed	
to	fool	unsuspecting	investors		If	you	are	asking	yourself	such	questions,	you	are	already	on	your	way	to	
an	answer.	Believe	it	or	not,	this	is	the	“simple”	in	a	deal.	The	simple	is	what	lasts	when	a	deal	meanders	
through	time,	i.e.	through	original	time.	Here,	the	deal	is	coming	to	itself	from	out	of	itself	and	revealing	
its	essence,	its	Value.	
	
However,	the	proof	is	in	the	pudding	as	they	say.	In	the	space	allotted	to	us	(no	pun	intended),	we	do	
not	have	the	luxury	of	fully	exploring	parametric	space,	but	let’s	peek	into	Banach	Land	a	little	bit.	
	
As	an	example	of	convergence	in	an	actual	transaction,	Table	22.2	and	Figure	22.2	below	shows	the	
target	deal’s	convergence	history	in	yield	space	for	the	parametric	set	displayed	in	Table	22.1.		Alpha	in	
Table	22.2	is	the	convergence	criterion,	here	set	to	10	bps.		The	initial	rate	vector	was	set	to	7.0%	for	the	
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Here,	a	one-parameter	family	of	solutions	to	the	liquidity	problem	exists—those	extending	from	zero	to	
the	Issuance	Limit	line.		This	family	represents	the	deal’s	corresponding	issuance	window	and	can	be	
defined	as	the	range T ∈ [0,TM ] 	whereby TM 	is	the	maximum	feasible	issuance.	Given	trigger	level L0 	
this	seller	can	only	issue	an	amount Tm ,	where Tm < TM .	The	parabolic	strip’s	entire	inner	border	should	
be	considered	the	locus	of	optimality	for	this	transaction,	and	not	simply	the	point TM .	The	issuer	and	
the	investors	can	be	left	to	decide	where	along	that	border	the	deal	should	go	to	market.		
	
Finally,	all	deals	are	optimal	with	respect	to	some	constraint.	If	there	are	ad	hoc	restrictions	on	credit	
ratings,	a	lesser	issuance	level	than	what	is	economically	optimal	will	be	adopted.		For	any	given	deal,	
there	is	an	infinite	array	of	structuring	possibilities,	each	offering	its	own	brand	of	optimality.	The	only	
constant	in	all	of	this	is	that	structured	finance	valuation	in	that	starts	with	the	goal	and	omits	the	
process	is	technically	a	non-starter	and	operationally	destabilizing	to	debt	capital	markets.	
	

VI. A	Live	Example	of	Deal	Convergence	in	Yield	Space	
	

As	an	example	of	convergence	in	an	actual	transaction,	Table	22.2	and	Figure	22.2	below	shows	the	
target	deal’s	convergence	history	in	yield	space	for	the	parametric	set	displayed	in	Table	22.1.	Alpha	in	
Table	22.2	is	the	convergence	criterion,	here	set	to	10	bps.	We	illustrate	coding	the	non-linear	valuation	
loop	in	the	VBA	implementation	that	led	to	Table	22.2,	but	without	relaxation	mechanics.	
	
Table	22.1:	Parametric	Set	for	the	Target	Deal	

	
With	a	10	bps	threshold	value	for	Alpha,	the	rates	converge	self-consistently	to	within	1	bps,	which	is	far	
more	accurate	than	any	current	or	past	method	of	analysis.	Equilibrium	interest	rates	are	given	on	the	
penultimate	row	(Run	ID:	7)	of	Table	22.2,	to	match	our	ratings	of	Aa1	for	Class	A	and	Ba1	for	Class	B.	
	
Finally,	as	an	example	of	coding	the	non-linear	valuation	loop,	we	present	as	Exhibit	22.1	the	VBA	
implementation	that	led	to	Table	22.2,	but	without	relaxation	mechanics,	as	in	the	follow-on	section.	
	
	 	

 17 

Class	A	and	10.0%	for	the	Class	B	using	the	back	of	the	envelope	[BOTE]	approach	reviewed	in	earlier	
chapters.	
	

Parameter	ID	 Value	
Asset	Class	 Autos	

Principal	Allocation	Scheme	 Pro	Rata	
A	Class	Initial	Balance		 $29,937,671.49	
B	Class	Initial	Balance		 $7,484,417.87	

Delinquency	Trigger	Type		 Binary	
Delinquency	Trigger	Index	 Quart.	60+	DPD	
Delinquency	Trigger	Level	 10%	

Reserve	Account	Target	Level	(%	Current	Bal)		 3.0%	
Pool	Balance		 $37,422,089.37	

Estimated	Recoveries			 See	Chapter	17	
Percent	Current	Loans	at	Closing	 100%	

Gross	Expected	Loss	 17.37%	
Macroeconomic	Simulation	Method	 Clayton	Copula	

Estimated	Recovery	Delay	 3	months	
WAC	 16.65%	
WAM	 60.34	months	

	
Table	22.1:	Parametric	Set	for	the	Target	Deal	

	
Run	ID	 A	DIRR	(bps)	 B	DIRR	(bps)	 A	Rate	

(%)	
B	Rate	
(%)	

Alpha	

0	 -	 -	 7.00	 10.00	 1.0	
1	 0.97	 129.98	 5.12	 8.86	 0.2375	
2	 0.39	 62.06	 5.36	 7.78	 0.0623	
3	 0.33	 66.32	 5.30	 7.63	 0.0137	
4	 0.28	 62.45	 5.29	 7.54	 0.0028	
5	 0.32	 66.47	 5.31	 7.58	 0.0028	
6	 0.26	 58.38	 5.28	 7.47	 0.0061	
7	 0.26	 58.97	 5.29	 7.46	 0.0010	

Class	A	WAL:	27.5	months	 Class	B	WAL:	28.0	months	
	Moody’s	Class	A	Rating:	 1Aa 		 Moody’s	Class	B	Rating:	 1Ba 	

	
Table	22.2:	Target	Deal	Convergence	History	in	Yield	Space	

	
Finally,	as	an	example	of	coding	the	non-linear	valuation	loop,	we	present	as	Exhibit	22.1	the	VBA	
implementation	that	led	to	Table	22.2,	but	without	relaxation	mechanics	(see	next	section).		As	you	can	
see,	the	code	itself	is	trivial	compared	to	what	we	have	already	gone	through	to	get	here.	
	
With	a	10	bps	threshold	value	for	Alpha,	the	rates	converge	self-consistently	to	within	1	bps,	which	is	far	
more	accurate	than	any	current	or	past	method	of	analysis.	The	equilibrium	interest	rates	are	given	on	
the	penultimate	row	(Run	ID:	7)	of	Table	22.2	and	the	corresponding	Moody’s	letter-grade	ratings,	
shown	on	the	last	row,	drop	out	as	a	by-product.	This	is	the	end	of	the	road	for	this	deal.			
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Table	22.2:	Target	Deal	Convergence	History	in	Yield	Space	

	
	
Figure	22.2:	Non-Linear	Convergence	History	in	Yield	Space	

	
	
Run	the	nonlinear	loop	
	

Exhibit	22.1:	Non-Linear	Convergence	in	Yield	Space	
	

Sub	AnalyzeDeal()	
Dim	deal	As	deal,	n	As	Integer,	alpha	As	Double,	r	As	Range	
Call	ReadDeal(deal)	
deal.enablePrepayModel	=	True	
randVdc_seq	=	1	
Dim	aInitBal	As	Double,	bInitBal	As	Double	
aInitBal	=	deal.alpha	*	deal.poolBal	
bInitBal	=	(1	-	deal.alpha)	*	deal.poolBal	
Set	r	=	Range("NonLinearConv")	
r.ClearContents	
Range("Ratings").ClearContents	
Dim	i	As	Integer	
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see,	the	code	itself	is	trivial	compared	to	what	we	have	already	gone	through	to	get	here.	
	
With	a	10	bps	threshold	value	for	Alpha,	the	rates	converge	self-consistently	to	within	1	bps,	which	is	far	
more	accurate	than	any	current	or	past	method	of	analysis.	The	equilibrium	interest	rates	are	given	on	
the	penultimate	row	(Run	ID:	7)	of	Table	22.2	and	the	corresponding	Moody’s	letter-grade	ratings,	
shown	on	the	last	row,	drop	out	as	a	by-product.	This	is	the	end	of	the	road	for	this	deal.			
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For	i	=	1	To	max_non_linear_iterations	
Dim	ayr	As	Double,	byr	As	Double,	ata	As	Double,	bta	As	Double,	ar	As	Double,	br	As	Double	
Call	RunDealSim(deal,	n,	ayr,	byr,	ata,	bta)	
ar	=	YieldCurvePlusSpread(deal,	ata,	ayr)	
br	=	YieldCurvePlusSpread(deal,	bta,	byr)	
alpha	=	(aInitBal	*	Abs((ar	-	deal.aRate)	/	deal.aRate)	+	bInitBal	*	Abs((br	-	deal.bRate)	/	deal.bRate))	/	
deal.poolBal	
r.Cells(i,	1)	=	ayr	
r.Cells(i,	2)	=	byr	
r.Cells(i,	3)	=	ar	
r.Cells(i,	4)	=	br	
r.Cells(i,	5)	=	alpha	
	

‘At	the	convergence	threshold,	exit	the	loop	
	

If	alpha	<	threshold	Then	Exit	For	
End	If	
deal.aRate	=	ar	
deal.bRate	=	br	
Next	i	
	

‘Obtain	Spectrum	Grade	Credit	Ratings	
	

Range("Ratings").Cells(1)	=	GetRating(ayr)	
Range("Ratings").Cells(2)	=	GetRating(byr)	
End	Sub	
	
Successive	Relaxation	in	Yield	Space	
	

Spectrum	applies	the	successive	relaxation	technique	to	allow	tranche-wise	convergence	within	yield-
space	using	a	scaling	factor	appropriate	to	each	class.	This	is	not	the	basis	for	a	theory	of	relaxation,	it	is	
only	a	rule	of	thumb.	To	implement	relaxation,	proceed	as	follows:	
	

(1) Assume	that	in	the	target	deal	we	perform	Monte	Carlo	simulation n 	using	yield-vector rn 	and	are	
now	ready	to	compute	the	next	iterate-vector rn+1 	using	a	yield	update	rule	formulated	as	follows:	

	

ri
n+1 = ri

n + λi Δri
n 	 	 	 	 	 	 	 	 	 22.24	

	
(2) λi 	is	a	tranche	wise	relaxation	coefficient	of	order	one.	It	rules	the	relaxation	process	via	the	

tranche	increment Δri
n 	computed	via	the	yield	curve	function Yc 	as	follows:	

	

Δri
n =Yc (ti

n,ΔIRRi
n ) − ri

n 		 	 	 	 	 	 	 	 22.25	

(3) The	yield	curve	model	(next	Section)	takes	as	its	inputs,	with	respect	to	tranche i ,	average	life ti
n 	

and	average	yield	reduction ΔIRRi
n ,	both	of	which	are	outputs	of	any	given	MC	simulation.	If λi =1 	

the	new	rates	are	simply	set	equal	to	the	output	of	the	yield	curve	model	(i.e.	the	abscissa	of	the Yc 	
function)	resulting	from	the	last	MC	simulation.	

(4) Now	formally	define	the	familiar	notions	of	successive	over-	and	under-relaxation, SOR 	and SUR 	
respectively,	as	follows:	

	
SOR ≡ λi∈ (1,∞) 	 	 	 	 	 	 	 	 	 22.26	
SUR ≡ λi∈ [0,1) 	 	 	 	 	 	 	 	 	 22.27	
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Whenever λ >1 ,	tranche	rates	will	be	updated	by	a	greater	amount	(+	or	-)	than	warranted	by	the	yield	
curve	transformation,	while	when λ <1 	holds,	the	opposite	will	be	the	case.	Over-relaxation	drives	the	
system	to	a	fixed-point	solution	faster.	Under-relaxation,	the	reverse,	dampens	yield	oscillations	that	
could	cause	provisional	solutions	to	spin	out	of	control	when	a	bona	fide	fixed-point	solution	does	exist.		
	
To	reach	the	solution	rate-vector	as	fast	as	possible,	over-relaxation	is	better	as	long	as	it	does	not	
destabilize	the	deal.	Usually	it	is	better	to	drive	the	provisional	solution	vector	initially	to	its	fixed	point	
using	over-relaxation	on	senior	tranches	and	under-relaxation	on	junior	tranches.	It	can	also	be	helpful	
to	modulate	tranche-wise	relaxation	factors	in	a	cascading	manner.	Modulation	matters	in	managing	the	
runtime	of	deals	with	many	tranches.	For	5+,	a	properly	designed	tranche-wise	relaxation	plan	can	yield	
significant	CPU-time	savings.		
	
A	good	relaxation-factor	modulation	index	is	the	slope	of	the	yield	curve	update Δri

n 	as	a	function	of	the	
iterate	counter n .	The	value	of	tranche-wise	relaxation	parameters	 λi 	should	be	specified	as	a	
negatively	sloped,	monotonic	function	of Δri

n ,	as	shown	in	Figure	22.7	below.	
	

Figure	22.7:	Suggested	Form	for	the iλ 	Modulating	Function	

	
	
Exhibit	22.2:	The	Successive	Over-Relaxation	Algorithm	inside	the	Non-Linear	Loop	
-	-	-	-	-	-	(same	non-linear	code	as	before)	-	-	-	-	-	-	-	-	-	
br	=	YieldCurvePlusSpread(deal,	bta,	byr)	
ar	=	deal.aRate	+	deal.aRelax	*	(ar	-	deal.aRate)		(Class	A	relaxation)	
br	=	deal.bRate	+	deal.bRelax	*	(br	-	deal.bRate)	(Class	B	relaxation)	
alpha	=	(aInitBal	*	Abs((ar	-	deal.aRate)	/	deal.aRate)	+	bInitBal	*	Abs((br	-	deal.bRate)	/	deal.bRate))	/	
deal.poolBal	
-	-	-	-	-	-	(same	non-linear	code	as	before)	-	-	-	-	-	-	-	-	-		
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VII Yield	Curve	Modeling	
	

At	the	outset,	remember	that	no	yield	curve	model	needs	to	be	implemented	in	practice	since	the	yield	
curve	itself	is	observable.	Instead,	a	simple	polynomial	form	will	do,	fitted	to	the	daily	values	found	in	
widely	circulated	publications.	However,	the	valuation	problem	is	sufficiently	non-linear	on	its	own	
without	adding	the	additional	noise	arising	from	the	vagaries	of	the	marketplace	(causing	discontinuous	
yield	curves	to	emerge).		To	bootstrap	our	model	Spectrum	uses,	and	recommends	the	use	of,	a	smooth	
well	behaved	yield	curve	model.	We	discourage	attempts	to	ape	precisely	empirical	yield	curves,	for	
they	will	be	all	wrong	tomorrow	anyway.		
	
Recall	that	total	yield	can	be	conceived	as	the	sum	of	contributions	from	three	distinct	sources:	
	

• The	equilibrium	price	of	instantaneous	transfers	(risk-free	rate)	
• The	credit	risk	premium	
• The	liquidity	premium	

	
The	Basic	Yield	Curve	Model	
	
Following	the	above	considerations,	we	can	formally	state	our	yield	curve	model’s	basic	schema:	
	

Yield	Curve	=	Treasury	Yield	+	Credit	Spread	
	
This	relation	can	be	formalized	using	the	same	basic	continuous	functions	we	used	in	Chapter	21	of	“The	
Analysis	of	Structured	Securities”	where	we	dealt	with	the	CDO	of	ABS.		We	reiterate	the	simple	diffusion	
model	here:	
	

Yc (t,ΔIRR) = f (t)+α tΔIRR 	 	 	 	 	 	 	 	 22.39	
	
In	equation	22.39,	the	first	term	is	the	risk-free	rate	and	the	second	term	is	the	diffusive	credit	spread	
term	with	the	familiar	square	root	behavior.		For	the	risk-free	rate	functional	form f (t) ,	we	had	selected	
our	old	friend	the	logistic	curve,	but	this	time	equipped	with	carefully	chosen	parameters:	
	

f (t) = r∞
1+β e−δ t

	 	 	 	 	 	 	 	 	 22.40	

	
In	equations	22.39	and	22.40	the	input	and	output	variables	were	defined	as	shown	in	Table	22.2	below.	
	
Table	22.2:	Variable	Definitions	for	the	Basic	Yield	Curve	Model	
Variable	 Definition	
Yc 	 Total	rate	as	the	sum	of	the	risk-free	rate	and	the	credit	spread	(%)	

t 	 The	average	life	of	a	tranche	(years)	

ΔIRR 	 The	average	reduction	of	yield	on	a	tranche	expressed	as	a	percentage	
α 	 Calibration	multiplier	
r∞ 	 Limiting	value	of	the	risk-free	rate	as	 t→∞ 	
𝛽	 Logistic	curve	(equation	22.40)	shifting	parameter	
δ 	 Logistic	curve	(equation	22.40)	spreading	parameter		(year)-1	

	

Using	the	Spectrum	or	Moody’s	rating	definition	of	average	reduction	of	yield,	total	yield Yc 	is	a	function	
of	broad	rating	category	using	this	parametric	set	in	Figure	22.8:α = 0.02 ,	 r∞ = 0.08 ,	 β = 0.9 ,	δ = 0.21 .	
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The	shaded	area	below	shows	a	VBA	implementation	of	the	same	algorithm,	where	the	yield	curve	is	
integrated	with	the	non-linear	portion	of	deal	analysis:	
	

Exhibit	22.3:	Yield	Curve	Model	Implementation	
	

Sub	ReadYieldCurveModel(deal	As	deal)	
Dim	r	As	Range	
Set	r	=	Range("YieldCurveModel")	
deal.ycRInf	=	r.Cells(1)	
deal.ycAlpha	=	r.Cells(2)	
deal.ycBeta	=	r.Cells(3)	
deal.ycDelta	=	r.Cells(4)	
End	Sub	
	

Function	YieldCurvePlusSpread(deal	As	deal,	ta	As	Double,	yr	As	Double)	As	Double	
	

YieldCurvePlusSpread	=	((deal.ycRInf	*	100)	/	(1	+	deal.ycBeta	*	Exp(-deal.ycDelta	*	(ta	/	12)))	+	
deal.ycAlpha	*	Sqr((ta	/	12)	*	yr	/	100))	/	100	
	

End	Function	
	

Spectrum	uses	a	model	fitted	to	actual	market	data	rather	than	an	empirical	curve.	An	analytical	model	
does	not	have	the	quirks	common	to	empirical	yield	curves	and	is	more	intuitive;	fitting	should	
guarantee	“smoothness.”	Deal	discontinuities	will	tend	to	arise	because	of	certain	structural	features	
that	kick	in	under	specified	conditions.		
	

Figure	22.8:	The	Basic	Yield	Curve	Model	

	
	

VIII.	Annotated	Biography	of	Banach	and	Proof	of	the	Banach	Fixed	Point	Theorem	
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Stefan	Banach,	one	of	the	20th	Century’s	leading	mathematicians,	was	the	illegitimate	son	of	Stefan	
Greczek,	a	local	tax	official	who	was	not	married	to	Banach’s	biological	mother,	who	vanished	shortly	
after	the	boy’s	baptism.	On	his	birth	certificate,	she	was	listed	as	Katarzyna	Banach,	who	is	believed	to	
have	been	either	his	real	mother’s	servant	or	someone	who	took	care	of	him	as	an	infant.	Later	on,	
when	Stefan	Jr.	tried	to	find	out	the	truth	about	his	natural	mother,	his	father	told	him	he	had	been	
sworn	to	secrecy.	Thus	with	Banach,	the	search	for	his	inner	self	took	on	a	very	personal	dimension.		
	

Young	Stefan	was	first	brought	up	by	his	grandmother	but	later	lived	with	Franciszka	Plowa,	who	lived	in	
Krakow	with	her	daughter	Maria,	whose	guardian,	the	public	intellectual	Juliusz	Mien,	taught	Stefan	to	
speak	French,	respect	education,	and	who	recognized	immediately	Banach’s	mathematical	talent.	In	
high	school,	Banach	was	considered	mediocre.	Upon	graduation,	convinced	there	was	nothing	left	to	
prove	in	mathematics,	he	studied	engineering	at	Technical	University	at	Lvov	until	1914.		
	

The	event	that	changed	Banach’s	life	forever	was	a	1916	chance	encounter	with	Hugo	Steinhaus,	a	
leading	Polish	mathematician	who	was	about	to	start	teaching	at	Lvov.	Steinhaus	told	Banach	about	a	
problem	he	had	been	struggling	with.	Banach	found	a	solution	in	a	few	days.	They	co-wrote	a	paper	
published	in	1918;	and	Banach	started	his	academic	career	in	Lvov	as	an	assistant	to	Lomnicki	and	later	
submitted	a	doctoral	dissertation	entitled	“On	Operations	with	Abstract	Sets	and	their	Applications	to	
Integral	Equations,”	a	work	now	believed	to	mark	the	birth	of	functional	analysis.		
	

Although	this	path	to	a	doctorate	was	irregular,	Banach	having	no	mathematics	qualifications,	an	
exception	was	made	and	he	obtained	the	Ph.D.	degree.	In	1922,	he	presented	his	Habilitationsschrift	on	
measure	theory.	This	is	the	post-doctoral	thesis	that	allows	someone	to	teach	at	a	University	under	the	
German	system.	Banach	was	now	a	professor	of	mathematics	at	the	Jan	Kazimierz	University	in	Lvov.	
	

In	the	inter-war	years,	Banach	and	Steinhaus	remained	close	collaborators.	In	1931,	they	started	editing	
a	new	series	of	mathematical	monographs	from	Lvov	while	colleagues	based	in	Warsaw	were	also	
contributing	material.	The	first	of	these	tomes,	written	in	Polish	by	Banach	himself	in	1931,	quickly	
became	a	classic	after	its	publication	in	French	ca.	1932	under	the	title	“Théorie	des	Opérations	
Linéaires”—theory	of	linear	operations.	And	the	rest	is	part	of	the	modern	history	of	mathematics.		
Banach	is	credited	with	the	foundation	of	functional	analysis	and	the	axiomatic	definition	of	the	“Banach	
Space”	(coined	by	Fréchet),	which	is	central	to	structured	financial	analysis.	He	made	major	
contributions	to	the	theory	of	topological	vector	spaces,	measure	theory,	integration	and	orthogonal	
series.	He	also	proved	a	number	of	fundamental	theorems,	notably	the	Hahn-Banach	theorem,	the	
Banach-Steinhaus	theorem,	the	Banach	fixed-point	theorem	(see	below),	the	Banach-Alaoglu	theorem	
and	the	well-known	Banach-Tarski	decomposition	theorem.	In	sum,	Stefan	Banach	was	a	brilliant	mind	
and	a	great	man	who	laid	the	theoretical	foundations	of	structured	finance.	
	

***	
	
Spectrum	goes	through	the	proof	of	Banach’s	fixed-point	theorem	below	to	provide	a	deeper,	more	
rigorous	mathematical	foundation	to	structured	finance	than	it	currently	has.	In	our	view,	it	is	not	
possible	to	learn	structured	security	valuation	without	comprehending	or	proving	it.	
	
In	finance,	analytical	results	are	so	rare	that	we	should	celebrate	any	time	we	come	across	something	
that	holds	water,	and	we	do.	The	canonical	statement	of	Banach’s	fixed-point	theorem	runs	as	follows:	
	
Premise:	Let (X,d) 	be	a	non-empty,	complete	metric	space	and	let T 	be	a	contraction	mapping	on

(X,d) 	with	constant q .		Choose	an	arbitrary x0 ∈ X 	and	define	the	sequence xn( )n=0
∞ 	by xn = T

nx0 .		
Further,	let	 a ≡ d(Tx0, x0 ) .	
	
Conclusion:	Then,	it	follows	that T 	has	a	unique	fixed	point	in X .	
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Metric	Space	
	

A	metric	space	is	a	vector	space	equipped	with	a	metric.	For	instance,	two-dimensional	Euclidean	space	
is	such	an	animal,	but	the	Pressure-Volume-Temperature	space	of	thermodynamics	is	not.	Obviously,	
when	you	define	a	metric	space,	it	is	a	good	idea	to	define	the	metric	as	well.	In	a	two-dimensional,	
Euclidean	space	for	example,	the	metric d 	with	respect	to	the	two	points P1 	and P2 	with	coordinates
(xi, yi ), i ∈ [1, 2] 	would	be	defined	as	follows:	
	

d ≡ (x1− x2)
2 + (y1− y2)

2 	

	
The	above	metric	looks	suspiciously	like	the	distance	measure	in	plane	geometry,	which	is	why	we	chose	
the	letter d 	to	label	it.	In	the	vast	majority	of	cases,	the	metric d 	applied	to	two	points	will	be	the	
Euclidean	distance	between	them.	
	

Complete	Metric	Space	
	

A	complete	metric	space	is	one	in	which	all	Cauchy	sequences	converge	to	a	limit.	This	assumption	is	
critical	to	prove	Banach’s	theorem.	In	a	Cauchy	sequence,	the	successive	elements an, n ∈ [0,∞) 	taken	
as	a	pair	become	increasingly	close	to	each	other.	With	respect	to	the	above	metric	space	with	metric	
d ,	a	Cauchy	sequence	can	be	defined	formally	as	follows:	
	
lim

min (m,n)→∞

d(am,an )→ 0 	

This	definition	is	more	general	than	the	relationship	to	deal	valuation,	but	the	intent	is	identical.		
		
Contraction	Mapping	
	

A	contraction	mapping,	also	called	a	hyperbolic	mapping,	is	characterized	by	the	fact	that	the	mapping	
of	any	two	points	in X 	will	result	in	a	reduction,	or	contraction,	of	the	distance	between	their	images	
compared	to	that	between	the	original	points.	If x 	and y 	are	chosen	arbitrarily	in X ,	then	for T 	to	be	a	
contraction	mapping	in X 	the	following	condition	must	hold	for	some	scalar q 	with 0 ≤ q <1:	
	
d(Tx,Ty) ≤ qd(x, y) 	(cf.	inequality	22.7)	
	
The	scalar q 	needs	to	be	the	largest	value	over X 	that	can	be	found,	since	the	requirement	is	for	the	
ratio	of	the	distances	between	the	mapped	and	unmapped	points	to	always	be	less	than q .		Also,	 q 	
cannot	be	equal	to	unity,	as	this	would	simply	move	some	of	the	points	around	the	space	without	
changing	the	distance	between	them.	In	effect,	if	this	held	everywhere	in X 	we	would	have	a	simple	
rotation	followed	by	a	potential	shifting	of	the	origin.	The	parameter a 	is	the	distance	between	the	first	
two	iterates	in	the	sequence,	i.e.	 a ≡ d(x1, x0 ) .	
	
Proof	of	Banach’s	Fixed	Point	Theorem	
	

First,	show	by	mathematical	induction	that	for	any n ≥ 0 ,	we	have:	
	

d(T nx0, x0 ) ≤
1− qn

1− q
a 	 	 	 	 	 	 	 	 (1)	
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For n = 0 ,	the	result	is	obvious.	For n ≥1 ,	suppose	 d(T n−1x0, x0 ) ≤
1− qn−1

1− q
a 	holds,	and	it	does	so	trivially	

for n =1 .		Then,	we	have	from	the	assumption	of	the	contraction	mapping:	
	

d(T nx0, x0 ) ≤ d(T nx0,T
n−1x0 )+ d(T

n−1x0, x0 ) ≤ q
n−1 d(Tx0, x0 )+

1− qn−1

1− q
a = q

n−1 − qn

1− q
a + 1− q

n−1

1− q
a = 1− q

n

1− q
a 	

	
Hence,	we	have	proved	inequality	(1)	by	using	the	triangle	inequality	(the	sum	of	the	length	of	two	sides	
is	always	greater	than	the	length	of	the	third)	and	repeated	application	of	the	contractive	property
d(Tx,Ty) ≤ qd(x, y) 	that	holds	for T .		By	induction,	the	property	holds	for n ≥ 0 .	
	
The	next	part	of	the	proof	consists	in	showing	that	the	elements T nx0,n ∈ [1,∞) 	of	the	sequence	starting	
at x0 	form	a	Cauchy	sequence,	which	means	that	successive	elements	get	increasingly	close	to	each	
other.	Once	this	is	done,	we	can	conclude	that	the	sequence	has	a	limit	since	the	metric	space	is	
assumed	complete.	As	you	have	already	guessed,	this	limit	will	turn	out	to	be	a	fixed	point	of	operator
T .	

Given	an	 ε > 0 ,	we	can	find	an	integer N 	such	that	 qn

1− q
a < ε,∀ n ≥ N 	because	the	ratio qn

1− q
a→ 0 	as

n→∞ .		Now,	for	any	pair m,n 	(and	assuming,	without	loss	of	generality,	that m ≥ n ),	we	have:	
	

d(xm, xn ) = d(T
mx0,T

nx0 ) ≤ q
n d(T m−nx0, x0 ) ≤ q

n 1− qm−n

1− q
a ≤ qn

1− q
a < ε 	

The	sequence	is	a	Cauchy	sequence	so	by	the	theorem’s	assumptions,	it	possesses	a	limit	point,	say x* .		
Next,	show	that x* 	is	a	fixed	point	of	the	operator T .	This	is	done	by	reductio	ad	absurdum.	
	
Suppose	that x* is	not	a	fixed	point	of	the	operator T ,	then	by	definition	we	haveδ ≡ d(Tx*, x*)> 0 .		
Because xn 	converges	to x* ,	there	is	an	integer N 	such	that d(xn, x

*)< δ 2 , ∀n ≥ N .		Playing	the	same	
game	as	before	(triangle	inequality),	we	find:	
	

d(Tx*, x*) ≤ d(Tx*, xN+1)+ d(x
*, xN+1) ≤ qd(xN , x

*)+ d(x*, xN+1) < δ 2 + δ 2 = δ 	
	

So,	the	condition d(Tx*, x*) = 0 	must	hold.	 x* 	is	a	fixed	point	of	the	operator T 	inside	metric	space X .	
	
The	last	part	of	the	proof	is	to	show	that	the	fixed	point x* 	is	unique.	To	do	this,	we	again	have	recourse	
to	the	negative	method.	To	wit,	suppose	there	exists	another	fixed	point x ' 	of	 T 	in X and	that x ' ≠ x* .	
This	means d(x ', x*)> 0 ,	but	then:	 d(x ', x*) = d(Tx ',Tx*) ≤ qd(x ', x*)< d(x ', x*) 	
	
This	is	clearly	a	contradiction.	If	two	fixed	points	exist,	they	must	in	fact	be	the	same	point.	
	
Relationship	to	Linear	Iterative	Sequences	
	

This	discussion	is	related	to	Spectrum’s	educational	material	on	linear	operators	in	eigenvalues.	
Eigenvalues	can	be	conceived	as	shrinking	or	stretching	factors	that	modify	input	vectors	upon	the	
operation	of	a	matrix.	An	analogy	exists	between	the	linear,	matrix	operators	we	discussed	previously	
and	the	hyperbolic,	non-linear	operators	at	the	heart	of	Banach’s	proof.	
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In	effect,	the	parameter q 	above	is	the	equivalent	of	the	stretching	or	shrinking	factor,	and	thus	can	be	
regarded	as	the	“eigenvalue”	of	operator T .	Since q 	is	always	less	than	one,	the	iteration	of T 	leads	to	
an	“equilibrium”	solution	here	as	well.	As	before,	the	equilibrium	solution	is	reached	asymptotically	in	
the	limit n→∞ .	
	
Note	also	that	the	properties	of	the	fixed	point	are	transcendental,	which	means	that	as	long	as	we	are	
not	quite	at	the	fixed	point x* ,	the	operator	keeps	the	process	moving	ever	so	slightly.	It	is	only	at	the	
precise	equilibrium	location	that	the	operator	simply	reproduces	its	input.		
	
Thus	in	practice	the	fixed	point	is	an	ideal	limit	that	is	never	truly	reached.	As	we	approach	equilibrium,	
spurious	elements	tend	to	vanish	(cf.	Markov	chain	eigenvalues	less	than	unity	in	absolute	value)	and	
the	dominant	behavior	is	recognized	as	that	corresponding	to	the	leading	eigenvalue.	
	
A	situation	can	also	be	imagined	whereby q >1 	holds	and	a	fixed	point	still	exists;	but	unless	the	
iterative	sequence	begins	precisely	there,	by	sheer	luck,	the	system	will	never	approach	its	fixed	point	
on	its	own	and	will	generally	diverge.	Thus,	there	is	a	close	relationship	between	eigenvalue	analysis	and	
the	discovery	of	fixed	points	within	non-linear	systems.	
	
End:	Spectrum’s	Primary	Market	Structured	Finance	Valution	Method	Supporting	Its	Rating	Approaches	
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Beginning:	Spectrum’s	Secondary	Market	Structured	Finance	Valution	Method		
 

I. Introduction	
	
Spectrum	has	a	unified	approach	for	rating	structured	securities	in	the	secondary	market.	It	applies	
globally,	across	and	down	the	credit	spectrum.	The	basis	of	our	approach	is	encoded	in	a	patented	utility	
process	designed	by	the	founders	of	Credit	Spectrum	Corp:	ABSTRAK(R).	
	
The	conceptual	basis	is	a	re-valuation	of	pools	of	financial	assets	from	underlying	updated	primary	data	
elements	obtained	from	transaction-specific	servicer	reports	in	a	Monte	Carlo	framework.	The	outputs	
are	fed	to	a	logical	inference	engine	that	values	the	associated	tranches	using	the	cash	flows,	by	truing	
up	the	fair	market	value	of	outstanding	ABS,	RMBS	and	CMBS	transactions.	
	
CDO	of	ABS	require	a	further	abstraction	over	the	single-transaction	ABSTRAK™	engine	but	becomes	
trivial	after	the	time-series	of	tranche-specific	cash	flows	become	available.		
	
ABSTRAK(R)	at	a	Glance	
	

The	complete	ABSTRAK(R)	platform	consists	of	two	distinct	software	environments:	
	

(1) The	asset-side	cash	flow	engine	described	further	below	
(2) The	deal	structuring	tool	known	as	the	Waterfall	Editor™	[WFE]	

	
Spectrum’s	WFE©	allows	users	to	represent	with	infinite	precision	the	allocation	rules	in	a	prospectus	or	
PPM.	It	can	be	used	in	two	independent	modes:		
	

(1) As	a	stand-alone	application	it	enables	the	user	to	enter	and	test	tranche	cash-flow	allocation	
rules	(waterfall);	

(2) Integrated	with	the	ABSTRAK(R)	it	enables	securities	associated	with	an	existing	transaction	to	
be	valued.	

	
II. The	ABSTRAK™	Formalism	

	
The	valuation	of	structured	securities	inside	ABSTRAK™	is	a	two-step	process.	The	first	step	[Calibration]	
is	automated	and	the	second	[Monitoring]	is	automatic.	
	
Step	1:	Calibration	
	
Calibration	refers	to	the	a	priori	normalization	of	a	transaction,	i.e.	its	valuation	founded	on	a	universal	
basis.	If	they	stem	from	a	widely	agreed	upon	basis,	such	calibrated	values	lie	beyond	logic.	The	same	is	
true	of	the	temperature	scale	for	instance.	The	fact	that	the	physical	distance	between	the	freezing	and	
boiling	points	of	water	is	partitioned	into	100	degrees	Centigrade	is	not	a	logical	determination,	only	a	
generally	acceptable	and	arbitrary	assumption.	In	fact,	the	basis	of	temperature	is	itself	irrelevant	to	the	
proper	operation	of	chemistry	if	everyone	can	communicate	findings	based	on	it,	hence	the	label	‘basis’.	
It	is	in	this	way	that	water	is	the	ground	of	the	temperature	scale.	However,	glycerin	or	honey	would	do	
just	as	well.	
	
Basis	Selection	
	
Structured	finance	has	a	critical	need	for	a	widely	acceptable	basis	on	which	to	renormalize	tranche	
valuations	in	the	secondary	market.	Credit	Spectrum	currently	uses	our	credit	rating	on	the	senior	
tranche	or	tranches.	This	is	a	good	standard:	every	deal	has	one.		
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Using	a	mapping	table,	Spectrum’s	letter-grade	rating	is	mapped	to	an	average	yield	reduction	from	the	
initial	coupon	promise	for	fixed-rate	tranches	or	the	spread	on	floating-rate	bonds.	Spectrum’s	Aaa	
structured	rating	maps	to	a	maximum	average	yield	reduction	of	0.06	bps.	Once	the	deal	is	calibrated,	
the	remaining	tranche	ratings	are	naturally	computed.	ABSTRAK(R)	always	delivers	consistent	ratings	
with	respect	to	all	liability-tranches.	
	
Preparing	the	Deal		
	
Before	a	transaction	can	be	calibrated,	it	must	be	input	into	ABSTRAK™	by	parameterizing	its	assets	and	
liabilities.	Assets	normally	consist	of	a	set	of	a	priori	independent	loans,	leases,	or	other	financial	
contracts	in	which	liability	holders	own	an	undivided	interest.		
	
All	loan-level	cash	flow	results	are	aggregated	to	the	pool	level	before	they	are	fed	to	the	waterfall	for	
further	analysis.	In	contrast	to	primary	market	analysis,	where	loan-level	data	matter,	for	secondary	
market	monitoring	further	granularity	should	not	improve	the	quality	of	the	secondary	market	credit	
analysis	unless	additional	credit-sensitive	data	elements	were	made	available	thereby.	Collecting	loan-
level	data	elements	can	impose	a	significant	financial	and	administrative	burden	on	servicers	without	
necessarily	adding	more	accuracy	than	the	monthly	data	feedback	loop	from	monthly	remittance	
reports.	
		
In	all	Spectrum	approaches	to	plain-vanilla	consumer	and	commercial	default	analysis,	the	underlying	
assets’	evolving	credit	status	is	parameterized	with	non-stationary	Markov	transition	matrices,	and	
modulated	monthly	by	the	changing	cumulative	loss	curve.		
	
The	transition	matrix	system	includes	a	credit	loss	tracking	parameter	[Asymptote]	and	a	single-month	
mortality	prepayment	multiplier	[SMM].	Both	are	calibrated	to	unity	at	closing.	During	the	monitoring	
phase	they	will	be	adjusted	automatically	using	remittance-report	feedback.		
	
Asset-side	cash	flows	are	computed	for	each	collection	period	and	fed	to	the	target	transaction	
waterfall,	to	retire	the	liabilities.	This	sub-step	requires	a	file	describing	the	capital	structure	of	the	
transaction	and	cash-flow	allocation	rules.	Spectrum	programs	the	cash-flow	allocation	rules	into	
WFE©,	which	produces	an	XML	file	with	detailed	allocation	rules	in	Java.	A	Cloud	Version	of	WFE©	does	
the	same	in	Java	Script.		
	

	
	
	
	
	
	
	
	
Calibration	
	
Banach’s	fixed-point	theorem	posits	the	existence	of	a	unique	solution	to	the	valuation	problem.	
Axiomatically,	a	unique,	marginal	asset	default	short-rate	volatility	compatible	with	the	transaction	
senior	tranche	rating	exists.	The	short-rate	volatility	is	computed	through	a	one-dimensional	root-locus	
procedure.	The	calibration	step	adjusts	the	short-rate	volatility	embedded	in	the	stochastic,	cumulative	
default	process	to	the	asset	pool.	Convergence	is	guaranteed	because	this	is	the	solution	of	one	

30-day 60-day Prepay 
30-day 0.002 0.001 0.02 
60-day -- 0.4 0.01 
Prepay -- -- -- 

Beginning of period Values 

End of period  Values 

Single Month Transition Matrix 
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equation	in	one	unknown	variable.	Initial	credit	ratings	on	all	corresponding	deal	tranches	are	
simultaneously	derived	and	stored	in	memory	as	by-products	of	the	calibration	step.		
	
The	short-rate	volatility	modulates	these	monthly	transition	matrices,	which	are	updated	with	periodic	
servicer	data.	Thus	Spectrum	directly	simulates	deal	cash	flows	directly	by	its	cash	flow	transfer	
function.	In	addition	to	tranche-wise	average	yield	reductions	and	equivalent	ratings,	ABSTRAK(R)	17	
other	predictive	metrics	with	respect	to	each	tranche,	including	relative	fair	market	value	[RMFV]	under	
credit	and	market	risk,	RMFV	absent	market	risk,	credit	duration,	credit	convexity,	ands	the	tranche-
level	fair-market	CDS	spread.	Metrics	are	updated	monthly	in	the	re-valuation	process	carried	out	during	
the	monitoring	phase	(see	Step	2	below).	At	that	point,	the	transaction	is	considered	“live”	and	ready	for	
monitoring.	
	
Step	2:	Monitoring	
	

Spectrum	monitors	all	live,	secondary-market	transactions	with	the	payment	frequency	and	produces	
time-series	results	up	to	the	most	recent	distribution	date.	A	plain	vanilla	monitoring	phase	does	not	
require	human	intervention.	Graphical	time-series	outputs	are	automatically	produced	for	each	input	
and	modeled	parameter.	Transactions	can	be	incorporated	into	the	monitoring	process	after	closing	and	
re-analyzed	if	critical	or	value-sensitive	data	elements	are	re-stated.	Spectrum	keeps	separate	records	of	
the	original	and	remonitored	results	in	database.		
	
Transaction	monitoring	remains	in	place	until	the	associated	structured	securities	have	all	paid	off,	or	
else	the	deal	has	been	restructured.	Spectrum	believes	this	is	the	only	way	a	Bayesian	estimate	of	future	
performance	based	on	the	real-time	integration	of	a	deal’s	empirical	history	can	remain	current	and	
thus,	serve	as	the	rationale	for	the	valuation	of	the	associated	liabilities.	After	approximately	18	to	24	
months	of	seasoning,	performing	deals	usually	stabilize,	resulting	in	reliable	forward-looking	metrics.	
	
Logistical	Implementation	
	

On	a	periodic	basis,	after	transaction	remittance	reports	have	been	produced	and	made	available	to	
ABSTRAK(R)	the	system	automatically	downloads	updated	XML-	or	spreadsheet-based	deal	files	and	
runs	the	monitoring	program.	ABSTRAK(R)	also	downloads	the	reference	yield	curve	and	other	ancillary	
time	series	data	from	various	public	websites,	to	update	the	ratings	and	ancillarymetrics.	ABSTRAK(R)	
sends	an	email	notice	when	the	process	is	comoplete	and	the	updates	can	be	viewed,	or	alternatively	
data	errors	were	found	requiring	investigation	before	a	new	monitoring	attempt	can	be	made.		
	
Technical	Implementation	
		

At	the	technical	level,	the	monitoring	process	is	straightforward	and	proceeds	through	a	four-
dimensional,	integral,	root	locus	optimization	algorithm	very	similar	to	the	one	used	during	calibration.	
Specifically,	they	are:	
	

1) Prepayments	
2) Defaults	
3) 30-day	dollar	delinquencies,	and	
4) 60-day	dollar	delinquencies.	

	
As	a	rule	other	delinquency-buckets	are	too	unstable	to	deliver	reliable	signals.	Otherwise,	on	a	monthly	
basis,	ABSTRAK(R)	integrates	the	transaction’s	multi-dimensional	cash	flow	density	function	as	above	
and	gets	preliminary	values	for	cumulative	prepayments	and	cumulative	gross	defaults	(graph	below).	
The	integration	process	is	initially	volatile	but	self-stabilizes	post-closing	in	under	(6)	months	to	deliver	
smoothly	varying	time	series	with	strong	predictive	power	due	to	optionality	and	de-leveraging.	
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Despite	the	secular	impact	of	asset-side	stabilization	just	mentioned,	the	relative	payment	certainty	of	
highly	leveraged	tranches,	like	the	subordinated	tranches	of	mortgage-backed	security	transactions,	
may	remain	relatively	volatile	throughout	the	transaction’s	lifetime.	This	should	not	be	surprising,	since	
the	bottom	3%	of	the	capital	structure	could	be	wiped	out	entirely	by	servicer	information	indicating	a	
cumulative	net	loss	rate	of	3%	or	greater	over	the	deal’s	remaining	life.	The	increments	in	current	
marginal	loss	that	would	cause	such	an	event,	if	extrapolated	over	the	transaction’s	future,	are	small	
and	counter-intuitive.	
	
Spectrum	compares	preliminary	ABSTRAK™-resident	cumulative	prepayment	and	default	rates	to	
empirically	observed	values	for	the	same	data	elements,	adjusting	parameters	of	the	status-transition	
process	in	situ	to	match	empirical	values.	A	small	margin	of	error	is	allowed	inside	the	matching	
algorithm,	to	allow	for	statistical	errors	and	servicer	data	inconsistencies	that	always	interfere	with	an	
otherwise	purely	analytical	process.	The	above	root-locus	process	is	next	applied	to	the	first	two	
delinquency	buckets,	after	which	the	deal	is	ready	for	the	monthly	update	process.		
	
ABSTRAK(R)	completes	the	monitoring	step	by	carrying	out	a	new	Monte	Carlo	simulation	from	the	next	
collection	period	until	the	remaining,	weighted-average	loan	maturity	[WARM]	of	the	assets	in	the	deal.	
This	simulation	uses	the	stochastic-process	parameters	that	have	been	adjusted	via	servicer	report	
feedback.		
	
Because	the	monitoring	phase	begins	with	stochastic	integration	from	closing	to	the	current	collection	
period,	the	associated	re-valuation	automatically	takes	into	account	the	pool’s	current	amortization	as	
well	as	the	deal’s	intricate	liability	pay-down	schedule.	ABSTRAK(R)	thus	can	keep	up	in	real	time	with	
transaction	dynamics	and	incorporate	the	non-linear	impact	of	credit	losses	and	delinquencies	on	the	
fair	market	value	of	its	liabilities,	enabling	investors	and	traders	to	witness	in	real	time	the	tranches’	
unfolding	credit	improvement	or	deterioration.		
	
For	further	details,	please	feel	free	to	contact	Sylvain	Raynes	at	1	212	867	5693	or	
sylvain@creditspectrum.com.		
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